skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Chavez, Francisco P"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Lipids are essential biomolecules for cell physiology and are commonly used as biomarkers to elucidate biogeochemical processes over a large range of environments and timescales. Here, we use high-temporal-resolution lipidomic analysis to characterize the surface ocean community in the productive upwelling region overlying the Monterey Bay Canyon. We observed a strong diel signal with a drawdown of lipids at night and an increase during the day that seemed to correspond to wholesale removal of lipids from the surface ocean as opposed to internal metabolism. Individual lipid species were organized into coregulated groups that were interpreted as representing different phytoplankton guilds. Concentrations of long-chained triacylglycerols (TAGs) showed unique patterns over the course of five days. TAGs were used to estimate the amount of energy cycled through the surface ocean. These calculations revealed diurnal carbon cycling that was on scales comparable to net primary production. The diel pattern dissipated from most lipid modules on Day 3 as tidal forcing increased at our site with the advent of the new moon. Pigment analysis indicated that the community shifted from a diatom-dominated community to a more diverse assemblage, including more haptophytes, chlorophytes, and Synechococcus during the new moon. The shift in community appears to promote higher nutritional quality of biomass, with more essential fatty acids in the surface ocean during the spring tide. This analysis showcases the utility of lipidomics in characterizing community dynamics and underscores the importance of considering both diel and tidal timescales when sampling in productive coastal regions. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  2. Abstract Current information on the status and trends of ocean change is needed to support effective and responsive management, particularly for the deep ocean. Creating consistent, collaborative and actionable mechanisms is a key component of the Deep Ocean Observing Strategy, a program of the United Nations Decade of Ocean Science for Sustainable Development. Here, we share an iterative, agile, and human-centred approach to co-designing datastreams for deep-sea indicators that serves stakeholders, including US National Marine Sanctuaries, presented as a four-phase project roadmap initially focused on the Monterey Bay National Marine Sanctuary, and then generalized to other areas such as the US West Coast, offshore wind development areas, and managed marine spaces globally. Ongoing efforts to provide key physical, biogeochemical, biological, and ecosystem variables for California's Marine Protected Areas are informing this co-design process. We share lessons learned so far and present co-design as a useful tool for (1) assessing the availability of information from deep ecosystems, (2) ensuring interoperability, and (3) providing essential information on the status and trends of indicators. Documenting and sharing this co-design strategy and scalable four-phase roadmap will further the aims of DOOS and other initiatives, including the Deep Ocean Stewardship Initiative and Challenger 150. 
    more » « less
  3. Abstract. Eastern boundary upwelling systems (EBUS) contribute a disproportionatefraction of the global fish catch relative to their size and are especiallysusceptible to global environmental change. Here we present the evolution ofcommunities over 50 d in an in situ mesocosm 6 km offshore of Callao, Peru, andin the nearby unenclosed coastal Pacific Ocean. The communities weremonitored using multi-marker environmental DNA (eDNA) metabarcoding and flowcytometry. DNA extracted from weekly water samples were subjected toamplicon sequencing for four genetic loci: (1) the V1–V2 region of the 16SrRNA gene for photosynthetic eukaryotes (via their chloroplasts) andbacteria; (2) the V9 region of the 18S rRNA gene for exploration ofeukaryotes but targeting phytoplankton; (3) cytochrome oxidase I (COI) forexploration of eukaryotic taxa but targeting invertebrates; and (4) the 12SrRNA gene, targeting vertebrates. The multi-marker approach showed adivergence of communities (from microbes to fish) between the mesocosm andthe unenclosed ocean. Together with the environmental information, thegenetic data furthered our mechanistic understanding of the processes thatare shaping EBUS communities in a changing ocean. The unenclosed oceanexperienced significant variability over the course of the 50 d experiment,with temporal shifts in community composition, but remained dominated byorganisms that are characteristic of high-nutrient upwelling conditions(e.g., diatoms, copepods, anchovies). A large directional change was found inthe mesocosm community. The mesocosm community that developed wascharacteristic of upwelling regions when upwelling relaxes and watersstratify (e.g., dinoflagellates, nanoflagellates). The selection ofdinoflagellates under the salinity-driven experimentally stratifiedconditions in the mesocosm, as well as the warm conditions brought about bythe coastal El Niño, may be an indication of how EBUS will respond underthe global environmental changes (i.e., increases in surface temperature andfreshwater input, leading to increased stratification) forecast by the IPCC. 
    more » « less
  4. Abstract Biodiversity is changing at an accelerating rate at both local and regional scales. Beta diversity, which quantifies species turnover between these two scales, is emerging as a key driver of ecosystem function that can inform spatial conservation. Yet measuring biodiversity remains a major challenge, especially in aquatic ecosystems. Decoding environmental DNA (eDNA) left behind by organisms offers the possibility of detecting species sans direct observation, a Rosetta Stone for biodiversity. While eDNA has proven useful to illuminate diversity in aquatic ecosystems, its utility for measuring beta diversity over spatial scales small enough to be relevant to conservation purposes is poorly known. Here we tested how eDNA performs relative to underwater visual census (UVC) to evaluate beta diversity of marine communities. We paired UVC with 12S eDNA metabarcoding and used a spatially structured hierarchical sampling design to assess key spatial metrics of fish communities on temperate rocky reefs in southern California. eDNA provided a more-detailed picture of the main sources of spatial variation in both taxonomic richness and community turnover, which primarily arose due to strong species filtering within and among rocky reefs. As expected, eDNA detected more taxa at the regional scale (69 vs. 38) which accumulated quickly with space and plateaued at only ~ 11 samples. Conversely, the discovery rate of new taxa was slower with no sign of saturation for UVC. Based on historical records in the region (2000–2018) we found that 6.9 times more UVC samples would be required to detect 50 taxa compared to eDNA. Our results show that eDNA metabarcoding can outperform diver counts to capture the spatial patterns in biodiversity at fine scales with less field effort and more power than traditional methods, supporting the notion that eDNA is a critical scientific tool for detecting biodiversity changes in aquatic ecosystems. 
    more » « less
  5. Abstract Environmental DNA (eDNA) data make it possible to measure and monitor biodiversity at unprecedented resolution and scale. As use‐cases multiply and scientific consensus grows regarding the value of eDNA analysis, public agencies have an opportunity to decide how and where eDNA data fit into their mandates. Within the United States, many federal and state agencies are individually using eDNA data in various applications and developing relevant scientific expertise. A national strategy for eDNA implementation would capitalize on recent scientific developments, providing a common set of next‐generation tools for natural resource management and public health protection. Such a strategy would avoid patchwork and possibly inconsistent guidelines in different agencies, smoothing the way for efficient uptake of eDNA data in management. Because eDNA analysis is already in widespread use in both ocean and freshwater settings, we focus here on applications in these environments. However, we foresee the broad adoption of eDNA analysis to meet many resource management issues across the nation because the same tools have immediate terrestrial and aerial applications. 
    more » « less
  6. null (Ed.)
  7. Abstract. A global in situ data set for validation of ocean colour productsfrom the ESA Ocean Colour Climate Change Initiative (OC-CCI) is presented.This version of the compilation, starting in 1997, now extends to 2021,which is important for the validation of the most recent satellite opticalsensors such as Sentinel 3B OLCI and NOAA-20 VIIRS. The data set comprisesin situ observations of the following variables: spectral remote-sensingreflectance, concentration of chlorophyll-a, spectral inherent opticalproperties, spectral diffuse attenuation coefficient, and total suspendedmatter. Data were obtained from multi-project archives acquired via openinternet services or from individual projects acquired directly from dataproviders. Methodologies were implemented for homogenization, qualitycontrol, and merging of all data. Minimal changes were made on the originaldata, other than conversion to a standard format, elimination of some points,after quality control and averaging of observations that were close in timeand space. The result is a merged table available in text format. Overall,the size of the data set grew with 148 432 rows, with each row representing aunique station in space and time (cf. 136 250 rows in previous version;Valente et al., 2019). Observations of remote-sensing reflectance increasedto 68 641 (cf. 59 781 in previous version; Valente et al., 2019). There wasalso a near tenfold increase in chlorophyll data since 2016. Metadata ofeach in situ measurement (original source, cruise or experiment, principalinvestigator) are included in the final table. By making the metadataavailable, provenance is better documented and it is also possible toanalyse each set of data separately. The compiled data are available athttps://doi.org/10.1594/PANGAEA.941318 (Valente et al., 2022). 
    more » « less
  8. null (Ed.)